Visit us at: http://www.uecj4u.hpage.co.in

UNIVERSAL EDUCATION CENTRE JAYANT SHARMA (94145-37474, 98181-63814) Maths, Class 9

Time allowed: 3 hours

General Instructions:

a) All questions are compulsory.
b) The question paper consists of 31 questions divided into five sections - A, B, C, D and E.
c) Section A contains 4 questions of 1 mark each which are multiple choice questions, Section B contains 6 questions of 2 marks each, Section C contains 8 questions of 3 marks each, Section D contains 10 questions of 4 marks each and Section E contains three OTBA questions of 3 mark, 3 mark and 4 mark.
d) Use of calculator is not permitted.

Section A

1. The numerator of a fraction is less than the denominator. Write a linear equation in two variables to represent the statement.
(a) $x=y-1$
(b) $x+y+1=0$
(c) $x+y=1$
(d) $x=y$
2. Area of the triangle is equal to
(a) Base X corresponding altitude
(b) $\frac{1}{2} \mathrm{X}$ Base X corresponding altitude
(c) $\frac{1}{4} \mathrm{X}$ Base X corresponding altitude
(d) $\frac{1}{3} \mathrm{X}$ Base X corresponding altitude
3. The diameter of a roller is 84 cm and its length is 120 cm . it takes 500 complete revolution to move once over to level a playground. The area of the playground in m^{2} is
(a) 1184
(b) 1584
(c) 1284
(d) 1384
4. There are 60 boys and 40 girls in a class. A student is selected at random. Find the probability that the student is a girl.
(a) $\frac{4}{5}$
(b) $\frac{1}{5}$
(c) $\frac{2}{5}$
(d) $\frac{3}{5}$

Section B
5. Draw the graph of the linear equation $3 x+4 y=6$. At what points, the graph cuts the x -axis and the y-axis.
6. In the below figure ABCD is a parallelogram and $\angle D A B=60^{\circ}$. If the bisector AP and BP of angles A and B respectively meet P on $C D$. Prove that P is the midpoint of $C D$.

7. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.
8. $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are four consecutive points on a circle such that $\mathrm{PQ}=\mathrm{RS}$. Prove that $\mathrm{PR}=\mathrm{QS}$
9. Construct a triangle PQR given that $\mathrm{QR}=3 \mathrm{~cm}, \angle P Q R=45^{\circ}$ and $\mathrm{QP}-\mathrm{PR}=2 \mathrm{~cm}$.
10. A die is rolled once. Find the probability of getting an odd number?

Twelve defective balls are mixed with 132 good balls. It is not possible to just look at a ball and tell whether or not it is defective. One ball is taken out at random from this lot. Determine the probability that the ball taken is a good one.

Section C

11. Give the equations of two lines passing through (2,3). How many more such lines are there and why? Or
Two student of your class contributed Rs. 200 together in a charity fund. Write the linear representing this data. Give some points.
12. In the below figure X and Y are respectively the mid-points of the opposite sides $A D$ and $B C$ of a parallelogram ABCD. Also $B X$ and $D Y$ intersect $A C$ at P and Q respectively. Show that $A P=P Q=Q C$.

13. In the below figure $A B C D$ is a quadrilateral and $B E \| A C$ and also $B E$ meets $D C$ produced at E. show that area of $\triangle A D E$ is equal to the area of the quadrilateral $A B C D$.

14. If a pair of parallel line is intersected by a transversal, show that the bisectors of a pair of alternate interior angles are also parallel.
15. In the given figure $A B$ is a diameter of the circle, $C D$ is a chord equal to the radius of the circle. $A C$ and $B D$ when extended intersect at a point E. prove that $\angle A E B=60^{\circ}$.

16. The pillars of a temple are cylindrically shaped. If each pillar has a circular base of radius 20 cm and height 10 m , how much concrete mixture would be required to build 14 such pillars?
17. The radius of a spherical balloon increases from 7 cm to 14 cm as air is pumped into it. Find the ratio of surface areas of the balloon in two cases.
18. A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:

Monthly Income (In Rs)	Number of Televison/Household			
	0	1	2	above 2
<10000	20	240	60	0
$10000-14999$	10	380	120	30
$15000-19999$	0	1100	760	220
$20000-24999$	0	370	80	
25000 and above	0		0	

Find the probability of:
(i) Of a household earning Rs. 10000-14999 and having exactly one television.
(ii) A household earning Rs. 25000 and more per year and owning two televisions. (iii) A household not having any television.

Section D

19. Let the vertex of an angle $A B C$ be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
20. A cancer detective centre is going to develop in our city of cuboid shape having 600 m , breadth 500 m and height 400 m . (a) Calculate its total area. (b)What concept derived from this activity?
21. One of the two digits of a two digit number is three times the other digit. If you interchange the digits of this two-digit number and add the resulting number to the original number, you get 88 . What is the original number?
22. Construct a triangle with perimeter 20 cm and base angle 60° and 45°.
23. Points P and Q have been taken on opposite sides $A B$ and $C d$ respectively of a parallelogram ABCD such that $A P=C Q$. Show that $A C$ and $P Q$ bisect each other.

Or
Prove that the parallelogram on the same base and between the same parallels is equal area.
24. A storage tank is in the form of a cube. When it is full of water, the volume of the water is $15.625 \mathrm{~m}^{3}$. If the present depth of the water is 1.3 m . find the volume of water already used from the tank.
25. In the below figure $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$. If $A Q$ intersects DC at P , show that $\operatorname{ar}(\triangle B P C)=\operatorname{ar}(\triangle D P Q)$

26. ABCD is a quadrilateral whose diagonals AC and BD intersect at 0 , prove that
(i) $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$
(ii) $A B+B C+C D+D A<2(A C+B D)$
27. In the below figure, A, B, C and D are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$

28. Ove the past 200 working days, the number of defective parts produced by a machine is given in the following table:

Number of defective parts	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Days	50	32	22	18	12	12	10	10	10	8	6	6	2	2

Determine the probability that tomorrow's output will have
(a) No defective part
(b) At least one defective part
(c) Not more than 5 defective parts
(d)More than 13 defective parts

Section E

29. OTBA Question for 3 marks from Statistics. Material will be supplied later.
30. OTBA Question for 3 marks from Statistics. Material will be supplied later.
31. OTBA Question for 4 marks from Statistics. Material will be supplied later.
